$200,000
$200,000
Imagine a traffic light at a busy intersection: when working correctly, the traffic light directs vehicles where they need to go and traffic flows properly. In the brain, the “traffic lights” control the signaling at synapses, which are the intersections between brain cells, or neurons. In an individual with Angelman syndrome, the flow of information at certain synapses is not regulated properly, leading to symptoms such as developmental delay, seizures and movement disorders.
In order to study the molecular mechanisms that are responsible for the symptoms of Angelman syndrome, this research will use a recently discovered technique that allows skin or blood cells from individuals to be converted into brain neurons that can be studied in the laboratory. For the first time, the research team will be able to evaluate the intersections (synapses) of human Angelman syndrome neurons at a cellular level. These studies will focus on a process called synaptic plasticity that adjusts the strength of synaptic intersections. The synaptic plasticity process plays an important role in forming proper neuronal circuits during brain development, and it is also critical for learning and memory throughout life. The research team will determine whether signaling malfunction by the molecule BDNF (the “traffic light”) causes deficits in the synaptic plasticity process in Angelman syndrome neurons. Issues with BDNF signaling could be responsible for the language impairments, seizures, and other symptoms of Angelman syndrome.
This research is important because it will:
The mission of Angelman Syndrome Foundation is to advance the awareness and treatment of Angelman syndrome through education and information, research and support for individuals with Angelman syndrome, their families and other concerned parties. We exist to give all of them a reason to smile, with the ultimate goal of finding a cure.