SCIENTIFIC ROADMAP **Established March 2025** In March 2025, the Angelman Syndrome Foundation (ASF) established a new Research Roadmap to guide and prioritize our scientific investments with the goal of accelerating meaningful treatments and improving quality of life across the lifespan for individuals with Angelman syndrome. This updated roadmap reflects current scientific advancements, community needs, and strategic opportunities for impact. For additional information about how ASF has historically met our research goals, please see page 5 for a review of our 2009 Research Roadmap and the progress it helped catalyze over the past decade. As graphically summarized, the following four pillars are proposed - UBE3A Regulation and Function - Cutting Edge Therapeutic Strategies - Therapeutic Endpoints and Biomarkers - Clinical Care and Innovation ### **UBE3A Regulation and Function** Goal: Continue to fund rigorous research towards understanding how UBE3A expression is regulated and how UBE3A functions in protein homeostasis and in neuronal function. Objective: Deepen our understanding of the role of UBE3A. This includes but is not limited to: - The roles of UBE3A in protein regulation - Nuclear versus cytoplasmic roles of UBE3A - Neuronal function in the absence of UBE3A - · Cell-type specific deficits in absence of UBE3A - Impact of UBE3A loss on different brain regions - Impact of haploinsufficiency of non-imprinted genes in Angelman Syndrome pathophysiology ### **Actions:** - Support investigations exploring the molecular mechanisms underlying UBE3A function and dysregulation. - Foster collaborations between molecular biologists, geneticists, and neuroscientists to elucidate the complex interactions within the AS genetic landscape. - Prioritize the funding of research projects aimed at identifying potential therapeutic targets and pathways affected by UBE3A deficiency and non-imprinted gene haploinsufficiency. ### **Cutting Edge Therapeutic Strategies** Goal: Support the study and development of new therapeutic approaches and the translational studies required for their advancement to the clinic. **Objective:** Develop and optimize therapeutic approaches such as gene therapy to restore UBE3A expression and mitigate the effects of non-imprinted gene haploinsufficiency. This includes but is not limited to: - The development of new strategies to activate UBE3A given rapid advancements in RNA and DNA editing approaches - Optimize current approaches to activate UBE3A - Develop strategies for enhanced delivery, durability, and distribution of therapies within the brain - Develop primate models of AS to test therapeutics approaches in the most relevant animal model. - Optimize viral delivery modalities for treating neurological disorders - Develop understanding of parameters required for effective gene therapy (e.g. percent cells targeted, brain regions targeted, minimum and maximum expression levels) - Develop approaches to prenatal delivery of these therapeutic approaches ### **Actions:** - Invest in preclinical studies to evaluate the efficacy and safety of gene therapy interventions targeting UBE3A reactivation. - Explore innovative gene delivery methods, such as viral vectors, nanoparticles, and CRISPR-based technologies, for precise and sustainable UBE3A restoration. - Collaborate with industry partners to accelerate the translation of promising gene therapy strategies into clinical applications, while ensuring rigorous regulatory compliance and ethical standards. ### **Clinical Care and Innovation** Goal: Enhance the quality of life and well-being of individuals with Angelman Syndrome through comprehensive and personalized clinical care approaches. **Objective:** Expand the therapeutic toolkit for Angelman Syndrome to address the multifaceted nature of the disorder. ### Actions: - Support research into pharmacological interventions targeting specific molecular pathways implicated in AS pathogenesis, such as synaptic dysfunction, GABAergic signaling, and neuroinflammation. - Investigate the potential synergistic effects of combining gene therapy with other therapeutic modalities, such as behavioral interventions, dietary supplements, and neuromodulation techniques. - Advance the development and accessibility of symptomatic therapeutics in Angelman syndrome. - Promote diversity in therapeutic development by encouraging studies that consider the unique genetic, phenotypic, and environmental factors influencing AS manifestation and response to treatment. - Implement innovative care models, such as telemedicine and remote monitoring technologies, to increase accessibility and continuity of care for patients and caregivers, particularly in underserved communities. - Foster partnerships between academic institutions, advocacy organizations, and healthcare providers to develop and disseminate best practices in AS clinical management, including early intervention strategies, symptom management protocols, and caregiver support programs. - Ensure that the LADDER Learning Network is utilizing the database to input clinical outcomes in order to update, create and standardize care. - Support the development of early detection methods, including pre-natal, and their implementation. Goal: Continue to fund studies to explore and develop endpoints and biomarkers to improve clinical trial design and measurement of response beyond physician and caregiver reported measures. **Objective:** Establish objective measures of treatment response and disease progression to facilitate the evaluation of therapeutic interventions for Angelman Syndrome. ### Actions: - Collaborate with regulatory agencies, patient advocacy groups, and industry stakeholders to define clinically meaningful endpoints and biomarkers for use in AS clinical trials. - Invest in the validation and standardization of outcome measures assessing key domains of AS symptomatology, such as motor function, communication skills, cognitive abilities, and behavioral profiles. - Support the development of novel biomarkers, including neuroimaging markers, electrophysiological assays, and molecular signatures, to improve diagnostic accuracy, monitor disease progression, and predict treatment outcomes in individuals with AS. - Maximize the utilization of LADDER data in all research initiatives. This goal aims to enhance the visibility and usability of LADDER data, ensuring it becomes a foundational element of the research community's efforts, aligned with the initial investment and strategic vision of the research roadmap. By pursuing these research directions and collaborative initiatives, the Angelman Syndrome community can advance scientific knowledge, accelerate therapeutic development, and ultimately improve the lives of individuals affected by this rare neurodevelopmental disorder. ### **Background** The Angelman Syndrome Foundation was formally established in 1992 and began supporting AS research efforts in the mid 1990's. The first research grant was awarded by the foundation in 1996 (\$10,000) to Dr. Joseph Wagstaff to study "Melatonin and Sleep in Angelman Syndrome", with the results published in 1999 (Journal of Pediatric Endocrinology & Metabolism, 1999, 12, 57-67). Between then and 2009, 59 grants, totaling "\$3.6 MM, were awarded. The studies supported during this period were wide ranging (See Table I) and a reflection of where the science of AS was at that time. ### The 2009 ASF Scientific Roadmap In 2008 the ASF assembled a task force to develop a Scientific Roadmap for the foundation. The task force was chaired by Charles Williams, the presiding chair of the ASF SAC. The task force members were Aaron Ciechanover, Evan Snyder, Dan Harvey, Steve Katz, and Fred Pritzker. The objective of the task force was to develop a roadmap (strategic plan) to guide the future scientific activities of the foundation and to ensure the efficient and productive use of its research dollars. The plan had the following three broad goals: - Aggressively support therapies to correct the UBE3A gene defects in AS - 2. Develop new therapeutic strategies in AS to ameliorate and/or cure the problems of: - Seizures - · Movement disorders - · Language disability - · Cognitive impairment - 3. Identify "best practices" for improvement of the health, behaviors and life skills of those with AS For each goal, short and long-term objectives (action plans) were defined (See Figure 1). | Goals | Short-Term Action Plan | Long-Term Action Plan | |--|--|--| | Aggressively support
therapies to correct the
UBE3A gene defects in AS | Delineate UBE3A regulatory aspects, including Imprinting Center mechanism of action Attempt UBE3A delivery / regulation in the animal model Conduct stem cell therapy studies | Support human trials for: • UCE3A replacement / activation • UBE3A gene / cell therapies | | Develop new therapeutic strategies in AS to ameliorate and / or cure the problems of: Seizures Movement disorders Language disability Cognitive impairment | Identify relevant UBE3A targets Better define neuronal-UBE3A physiology Identify critical areas in brain for UBE3A action Conduct animal model treatments Support alternative therapy research | Support human clinical trials for: • UBE3A druggable targets such as new anticonvulsant drugs. • Support novel therapies / alternative therapies | | Identify "best practices" for improvement of the health, behaviors and life skills of those with AS | Better define natural history Support behavioral intervention research Identify effective clinical outcomes Identify emerging adult and end-of-like issues | Promote and disseminate information about best practices for care, treatment and amelioration | The 2009 Road Map envisioned achieving these goals through the establishment of an Angelman Treatment and Research Institute (ATRI). The ATRI was anticipated to position the ASF as an international hub for collaboration on translatable research targeted to improve the symptoms and lifestyle difficulties for those with ASF. The ATRI was envisioned by the road map committee to be part of the ASF but supported by its own staff and structure. Once fully operational, the ASF SAC was expected to be brought under the ATRI umbrella. Additionally, the 2009 roadmap committee defined what would constitute a cure for AS and the theoretical ways at that time that such a cure might be achieved. It also acknowledged that such potentially curative treatments would most likely be best administered during fetal development or in the early postnatal period but recognized that there was insufficient knowledge at present to set an absolute time window for such treatments. ## What has been accomplished since 2009? # 2009 Road Map Goal 1: Aggressively support therapies to correct the UBE3A gene defects in AS Antisense Oligonucleotides (ASOs): In 2011 the ASF funded a proposal from Art Beaudet titled "The role of antisense RNA Ube3a-ATS in Ube3a imprinting and Angelman syndrome". In that proposal Dr. Beaudet stated: "Most of the Angelman syndrome patients have loss of UBE3A function due to maternal deletion, paternal uniparental disomy, imprinting defects or point mutation within UBE3A. No matter which class a patient belongs to, he/she usually has a normal copy of paternal UBE3A, which has the correct coding sequence, but is silenced under physiological conditions. If this copy of UBE3A can be reactivated in Angelman syndrome patients, significant improvements and recovery from Angelman-syndrome phenotype should be anticipated". Their studies, some of which were done in collaboration with Ionis, were published shortly thereafter (PLoS Genet., **2013**, 9; Nature, **2015**, 518, 409-412) and demonstrated that antisense oligonucleotides (ASOs) could unsilence paternal Ube3a and, in an AS mouse model, were capable of ameliorating some of the cognitive deficits associated with AS. Subsequent investigations by Ionis and others led to the advancement of three ASO-based programs into the clinic by GeneTx/Ultragenyx (2020, Phase 1/2), Roche (2020, Phase 1), and Ionis/Biogen (2021, Phase 1/2). Phase 3 studies were initiated by Ultragenyx in Q4 2024 and are anticipated to be initiated by Ionis in H1 2025. Gene Therapy: The foundation has also supported the development of gene therapy approaches. In 2007, prior to preparation of the 2009 roadmap, the foundation funded studies by Weeber et al, which were published in 2011 (PLoS ONE, 2011, 6, 27221) and demonstrated that an AAV-based approach could improve the cognitive deficits associated with AS in a mouse model. Subsequently, funding to support gene therapy investigations was provided to the labs of Dindot (2011), Zylka (2016, 2018), Gray (2017), Philpot (2020), and Butler (2022). Overall, these studies have demonstrated that gene therapy approaches to the treatment of AS are viable in animal models. Unfortunately, translation to human studies has been challenging, which is not unique to AS. Further investigations to move this area forward are in progress and additional development and pre-clinical efforts in this area are ongoing. Most promising is the announcement in November 2024 by Jim Wilson of GEMMA Biotherapeutics that IND-enabling studies of GTP-220 had been completed and that IND submission was expected in Q1-2025 Stem Cells: A short-term action plan under goal 1 was the exploration of patient derived stem cells. The first grant in this area was awarded to Eric Levine in 2011 with additional studies later supported in the labs of Chamberlain (2014), Morrow (2017), Doughty (2021), and Levine (2022). For a recent review of the extensive progress made in this area see Rocha et al. Front. Cell Dev. Biol. 2023, 11, 1274040. The first AS induced pluripotent stem cells (iPSCs) were generated in the Chamberlain labs (PNAS, 2010, 107, 17668-17673) and various other types of AS stem cell lines have subsequently been developed. Though still relatively new, induced pluripotent stem cells are now an important tool being used by many investigators to test and develop potential new AS therapeutic strategies. Small molecule "unsilencers": In 2009, funds were provided to the Philpot lab to identify novel compounds that could increase the expression of Ube3a in brain neurons. Using a high-content screen of a known drug collection, a group of compounds known as topoisomerase inhibitors were found to unsilence the paternal Ube3a allele (Nature, 2011, 481, 185-189). Additional funds were provided to the Philpot and Zylka labs in 2011 to support additional preclinical studies in this area. The inherent toxicity and poor CNS penetration of this compound class precluded their advancement to the clinic, but these studies provided further evidence that unsilencing of paternal UBE3A is a viable approach to AS therapy development. Funding to identify additional small molecule unsilencers of Ube3a was provided to the Philpot team in 2017. These studies identified a new class of small molecules outside of the topoisomerase chemistry space that can induce paternal Ube3a expression in mice, and paternal UBE3A expression in human iPSC derived neurons. The results of these studies were recently published (Nat Commun, 2024, 15, 5558) and represent a significant step forward in the development of a small molecule treatment for AS. 2009 Roadmap Goal 2 - Develop new therapeutic strategies in AS to ameliorate and/or cure the problems of: Seizures, Movement disorders, Language disability and Cognitive impairment. Activities in this relatively broad area have been extensive and a few are highlighted here. Gaboxadol – In 2012, Egawa and colleagues reported preliminary studies of the ability of 4,5,6,7-tetrahydroisothiazolo-[5,4-c)pryidin-3-ol (aka THIP, Gaboxadol), an extrasynaptic GABAA receptor agonist, to decrease tonic inhibition in various AS models. As clinical studies of gaboxadol had previously been completed and considerable safety data was available, clinical studies of gaboxadol as a treatment for AS were pursued by Ovid Therapeutics. In 2017, the foundation supported additional studies of gaboxadol by Egawa (Egawa, 2017) to develop a deeper understanding of the basis of this therapeutic approach. An initial phase 2 open-label trial suggested a positive response but, unfortunately, in a phase 3 blinded study, gaboxadol did not perform significantly better than placebo. Cannabidiol – CBD, a major component of cannabis has shown significant antiseizure activity and, based on community reports, is frequently being used to treat individuals with AS. In 2017, the ASF provided support to Carney and colleagues to conduct a preclinical assessment of CBD as a treatment for AS. These studies, published in **2019** (J. Clin Invest, 2019, 129, 5462-5467) provided "critical preclinical evidence supporting CBD treatment of seizures and alleviation of EEG abnormalities in AS", thus justifying its clinical use. Identification of relevant UBE3A targets — Identifying the downstream targets of UBE3A is of critical importance to expanding our understanding of the biochemistry of AS and the future development of rationally designed treatments. The ASF has funded downstream target studies in several labs (Howley, 2009; Klann, 2009; Greenberg, 2011; Lismann, 2013; Shepard, 2013; Kaphzan, 2015; Doughty, 2021). The targets studied by these groups include but are not limited to NRB-a/ErbB4, Dopamine D4 Receptors, Arc, Ephexin5, CaMKII and Alpha1-NaKA. These studies have not yet clearly identified a downstream druggable target but, in total, have greatly expanded our understanding of the extensive network of biochemical pathways influenced by the UBE3A gene. Seizures – In addition to the cannabidiol studies mentioned above, several seizure-related awards have been made. In 2008, as the 2009 roadmap was being developed, funding was provided to Ron Thibert to study "The Significance of EEG Findings in AS" and in 2010, funds were provided to Althea Robinson to evaluate EEGs and their relationship to sleep and behavior in children with AS. More recently, several funded studies have demonstrated that EEGs are a potential useful biomarker in AS clinical trials. Additional funding to study nonepileptic myoclonus in AS has been provided to Robert Carson. Overall, our understanding of how various types of seizures present and manifest in EEGs, as well as the importance of aberrant spectral power to AS, has been significantly expanded. Language/Communication – Grants to support language and communication research have been relatively limited (Sadhwani, 2015; Sennott, 2016) but extensive effort has been made by the foundation towards the development of language/communication training and education resources. In particular, a Communication Training Video Series, comprised of 43 sessions covering a wide area of communication related topics, was developed. More recently, "Stepping into AAC", a 20-part program supporting the use of Augmentative/Alternative Communication (AAC) devices has been produced in collaboration with PrAACtical AAC. Goal 3: Identify "best practices" for improvement of the health, behaviors and life skills of those with AS Key efforts in this area have been the AS Natural History Study, the creation of a network of AS Clinics and the development of the LADDER database. The AS Natural History Study, which was started in 2006 and currently incorporates data collected on more than 544 individuals with AS, is now a critical resource for the AS clinical research community. For example, data from the AS Natural History Study was recently used to analyze the achievement of daily living skills and developmental milestones (Journal of Neurodevelopmental Disorders, 2024, 16, 32). The availability of such data is extremely useful to establish a baseline of achievement for ongoing and upcoming clinical trials, particularly those in which a concurrent placebo arm would be inappropriate or too challenging. Initial funding for the study was provided by the NIH. The study is currently supported through the Angelman Syndrome Biomarkers and Outcome Measures Consortium (ABOM) with funding provided by the ASF, Ionis, Roche, Ultragenyx, and FAST. Annual funding is approximately \$500K. The ASF Clinics, now part of the **L**inking **A**ngelman and **D**up15q **D**ata for **E**xpanded **R**esearch (LADDER) Learning Network (LLN), began with two sites in Chapel Hill, NC and Boston, MA in 2012. The network now encompasses thirty-five clinics, twenty-three throughout the United States and twelve international. Seventeen of these clinics also support Dup15q syndrome research and treatment. These clinics provide individuals with AS access to the highest quality, evidence-based medical care covering a broad range of disciplines. Additionally, they provide critical experience and expertise in AS to support current and future clinical trials. The LADDER Learning Network aims to meet the following guiding objectives: - Increase access of families with Angelman syndrome (AS) and Duplication 15q syndrome (Dup15q) to comprehensive multidisciplinary clinical care at specially designated ASF/Dup15q clinic sites. - Facilitate communication and collaboration among US and international AS/Dup15q experts to share knowledge, discuss challenging cases, and work together on publications to benefit both communities. - **Promote clinical and translational research** through the LADDER database and support clinical trials to better understand both conditions and contribute to therapeutic development. Overall, during the 2012-24 period, the ASF has provided \$2.04 MM of support to the ASF Clinics and the Ladder Learning Network. The LADDER Database, is a strategic collaboration between the ASF and the Dup15q Alliance. It brings together information about AS and Dup15q collected from sources all over the world including: - The Angelman Natural History Study - Patient visits to the Clinics in the LADDER Learning Network - The Global Angelman Syndrome Registry - Research Studies done on AS and Dup15q Recently, a number of studies that have mined the data available through the LLN have been published. During the 2020-24 period, the ASF has provided \$1.7 MM of support to this effort. A number of activities of importance that were not explicitly envisioned in the 2009 Roadmap have also been pursued. One of some significance is the involvement of the ASF in the Angelman Biomarkers and Outcome Measures (ABOM) Alliance. In 2016 it was clear that a significant number of therapeutic approaches to the treatment of AS were going to be ready for clinical studies in the coming years. In March of that year, an initial meeting of representatives from family support groups, academic investigators and several pharma companies that were at an early stage of developing AS therapeutics was held to discuss what needed to be done to ensure that the anticipated clinical studies had the greatest chance of success. This meeting led to the creation later that year of ABOM. The alliance included patient foundations, such as the ASF, pharma companies (Ovid, Agilis, Roche, Ionis and others) and various academic investigators with clinical expertise. The focus of the alliance was the pre-competitive space wherein pharma companies are generally more willing to share information. A steering committee was formed and a diverse array of topics were explored, including, but not limited to, communication, gross motor, fine motor, cognition, sleep, seizures, behavior, quality of life/activities of daily living, Clinical Global Impression rating scales, and biomarkers derived from blood/body fluids. Through the efforts of this alliance, numerous collaborative projects were initiated, many of which supported the foundational clinical trials recently completed. | Grant Year | First | Last | Title | Institute | Amount Funded | |------------|-------------|------------------------|---|---|---------------| | 1996 | Joseph | Wagstaff | Melatonin and Sleep in Angelman
Syndrome | Boston Children's
Hospital | \$10,000.00 | | 1997 | Richard | Olsen | GABA beta3 Deficient Mice | | \$10,000.00 | | 1998 | Nicolay | Walz | Behavioral Aspects of Angelman
Syndrome | Cincinnati Children's
Hospital | \$3,213.00 | | 1999 | Stephen | Calculator | Use of Enhanced Natural
Gestures and Angelman
Syndrome | University of New
Hampshire | \$10,581.00 | | 1999 | Tim | DeLorey | GABA beta3 Deficient Mice | | \$10,000.00 | | 1999 | Richard | Olsen | GABA-A receptor beta 3 subunit knockout mice | | \$10,000.00 | | 2000 | Arthur | Beaudet | A Therapeutic Trial of Folate and
Betaine in Angelman Syndrome | Baylor College of
Medicine | \$62,903.00 | | 2000 | Ethan | Bier | Molecular Genetic Analysis of the
Drosophila Angelman Syndrome
Gene | University of California
San Diego | \$25,000.00 | | 2000 | Louise/Jill | Tiranoff/Clayton-Smith | (1) History & Discovery: Dr. Harry
Angelman's Observations, (2)
Special Issues of Adolescence
and The Transition to Adulthood | Other | \$29,700.00 | | 2000 | Nicolay | Walz | Sleep Patterns and Autistic
Symptomology in Angelman
Syndrome: Further Delineation of
the Behavioral Phenotype | Cincinnati Children's
Hospital | \$3,600.00 | | 2002 | Lynne | Bird | Folate Clinical Study SD Grant | University of California
San Diego | \$14,145.00 | | 2002 | Stephen | Calculator | Efficacy of Enhanced Natural
Gestures for Young Children with
Angelman Syndrome | University of New
Hampshire | \$11,541.00 | | 2002 | Soma | Das | Molecular Analysis of the
Angelman Syndrome: The role of
UBE3A deletions | University of Chicago | \$25,000.00 | | 2002 | Joseph | Wagstaff | Role of the UBE3A Gene Product
in Brain Protein Metabolism | University of Virginia | \$45,547.00 | | 2003 | Lynne | Bird | Folic Acid/Betaine Clinical Study | University of California
San Diego | \$26,000.00 | | 2005 | Yong-Hui | Jiang | Dissecting the roles of Ube3a in synaptic plasticity by analyzing synaptic function at the single cell level and utilizing 'Network Analysis Proteomics' strategy'. | Baylor College of
Medicine | \$56,000.00 | | 2005 | Aaron | Razin | Control of monoallelic expression of the Angelman gene UBE3A | The Hebrew University
- Hadassah Medical
School | \$50,000.00 | | Grant Year | First | Last | Title | Institute | Amount Funded | |------------|----------|-------------|---|--|---------------| | 2005 | Jane | Summers | Evaluating the effectiveness of
ABA-based
approaches for teaching
functional skills to children with
Angelman syndrome | McMaster Children's
Hospital and McMaster
University | \$47,000.00 | | 2005 | Joseph | Wagstaff | Testing for Correction of the
Angelman Syndrome Phenotype
of UBE3A-Maternal-Deficient Mice
by UBE3A Transgene | Carolinas Medical
Center | \$47,000.00 | | 2006 | Terry Jo | Bichell | Alphabet Therapy | Vanderbilt University | \$31,300.00 | | 2006 | Stephen | Calculator | Communication/Educational programs for students with Angelman Syndrome in inclusive classrooms: A look at best practices. | University of New
Hampshire | \$31,087.00 | | 2006 | Benjamin | Enav | A Prospective Pilot Study of
Gastric Myoelectrical Activity in
Children with Angelman
Syndrome | UCLA | \$30,000.00 | | 2006 | Fen-Ben | Gao | Genetic dissection of the
Molecular Pathways Underlying
the Pathogenesis of Angelman
Syndrome. | Gladstone Institute of
Neurological Disease | \$85,000.00 | | 2006 | Michael | Greenberg | Investigation of UBE3A in the role of Synapse Development | Boston Children's
Hospital | \$85,000.00 | | 2006 | Peter | Hammond | Facial phenotype-genotype
correlations in Angelman
Syndrome | UCL Eastman Dental
Institute | \$10,500.00 | | 2006 | Gentry | Patrick | Elucidating the function of the E6AP ligase at mammalian CNS synapses | University of California
San Diego | \$50,000.00 | | 2006 | Lowell | Rayburn | Effect of premature truncation of
the Ube3a antisense transcript on
Ube3a imprinted expression | Carolinas HealthCare
System | \$82,255.00 | | 2007 | Arthur | Beaudet | A rigorous test in the mouse of whether increased DNA methylation can activate neuronal expression of the paternal Ube3a allele | Baylor College of
Medicine | \$80,000.00 | | 2007 | Margaret | Bradley | Brain potentials of cognition and emotion in individuals with Angelman Syndrome | University of Florida | \$35,000.00 | | 2007 | Aaron | Ciechanover | The Ubiquitin Ligase E6-AP Targets the Polycomb Repressive Complex Proteins ring1b and bmil to Ubiquitination and Subsequent degradation: Structural and functional Implications and Possible Relationship to the Pathogenesis of Angelman Syndrome | Technion-Israel
Institute of Technology | \$95,000.00 | | 2007 | Michael | Ehlers | Ube3a and Altered Neuronal
Trafficking in Angelman
Syndrome | Duke University | \$75,000.00 | | Grant Year | First | Last | Title | Institute | Amount Funded | |------------|-----------|----------|--|--|---------------| | 2007 | Yong-Hui | Jiang | Explore the therapeutic potential of levodopa to treat Angelman syndrome in mouse model | Baylor College of
Medicine | \$50,000.00 | | 2007 | Brian | Kuhlman | Redesigning the Ubiquitin
Pathway to Identify the Substrates
of E6AP | University of North
Carolina, Chapel Hill | \$80,000.00 | | 2007 | Sarika | Peters | Neuroimaging Studies in
Angelman Syndrome | Baylor College of
Medicine | \$85,000.00 | | 2007 | Benjamin | Philpot | Importance of Ube3A for
Experience-Dependent
Modifications of Cortical
Synapses | University of North
Carolina, Chapel Hill | \$70,000.00 | | 2007 | Michael | Stryker | The role of UBE3A in
development of
excitatory-inhibitory balance in
neocortex | University of California
San Francisco | \$80,000.00 | | 2007 | Jane | Summers | Developing an assessment
battery to study learning, memory
and motor performance in
children with Angelman syndrome | McMaster Children's
Hospital and McMaster
University | \$30,000.00 | | 2007 | Ronald | Thibert | Low Glycemic Index Therapy for
the Treatment of Epilepsy in
Angelman Syndrome | Massachusetts General
Hospital | \$28,850.00 | | 2007 | Elizabeth | Thiele | Seizure Survey | Massachusetts General
Hospital | \$10,000.00 | | 2007 | Edward | Weeber | Therapeutic effectiveness of
levodopa in the treatment of
seizures and motor defects using
the Angelman Syndrome mouse
model | University of South
Florida | \$50,000.00 | | 2007 | Edward | Weeber | Identifying Potential Therapeutic
Strategies for the Treatment of
Angelman Syndrome | University of South
Florida | \$62,200.00 | | 2008 | Lynne | Bird | Levodopa/Carbidopa Treatment
of children with Angelman
Syndrome | University of California
San Diego/UCSF | \$72,855.00 | | 2008 | Michael | Ehlers | Restoration of Neocortical
Plasticity in a Mouse Model of
Angelman Syndrome | Duke University | \$95,000.00 | | 2008 | Ype | Elgersma | Are the neurological symptoms of
Angelman Syndrome reversible?
An inducible mouse model for
Angelman Syndrome | Erasmus University
Medical Center | \$76,600.00 | | 2008 | Yong-Hui | Jiang | Explore epigenetic therapy of using histone deacetylase inhibitors in the Angelman syndrome mouse model | Duke University | \$98,450.00 | | 2008 | Eric | Klann | Neuregulin-dependent Alterations
in Glutamate Receptor Function
and LTP in Angelman Syndrome
Model Mice | New York University | \$78,788.00 | | Grant Year | First | Last | Title | Institute | Amount Funded | |------------|----------|----------|--|--|---------------| | 2008 | Chris | Oliver | Establishing the basic principles
of effective intervention for
difficult behaviour in Angelman
syndrome. | University of
Birmingham | \$78,497.00 | | 2008 | Benjamin | Philpot | Restoration of Neocortial
Plasticity in a Mouse Model of
Angelman Syndrome | University of North
Carolina, Chapel Hill | \$95,000.00 | | 2008 | Lawrence | Reiter | A combined molecular and electrophysiological approach to understanding cerebellar defects in Angelman syndrome | University of
Tennessee Memphis | \$77,866.00 | | 2008 | David | Segal | Towards Gene Therapy for
Angelman Syndrome Using
Artificial Transcription Factors. | University of California
Davis | \$76,055.00 | | 2008 | Ronald | Thibert | The Significance of EEG Findings in Angelman Syndrome | Massachusetts General
Hospital | \$58,256.00 | | 2009 | Keith | Allen | Evaluation of a Standard
Behavioral Protocol in the
Treatment of Sleep Problems in
Children with Angelman
Syndrome | University of Nebraska
Medical Center | \$64,269.00 | | 2009 | Scott | Dindot | Determining the Role of the
E6-AP Isoforms in Synaptic
Maturation | Texas A&M University | \$94,563.00 | | 2009 | Peter | Howley | Identification of UBE3A Ligase
Substrates | Harvard Medical
School | \$200,000.00 | | 2009 | Yong-Hui | Jiang | Novel Ube3a Isoform and
Angelman Syndrome | Duke University | \$99,425.00 | | 2009 | Eric | Klann | NRB-a/ErbB4 and Dopamine D4
Receptors as Therapeutic Targets
to Treat Cognitive Deficits in
Angelman Syndrome | New York University | \$197,580.00 | | 2009 | John | Marshall | Rescue of Angelman Syndrome
Learning Deficits by an
Investigational New Drug | Brown University | \$198,899.00 | | 2009 | Sarika | Peters | Use of Conventional and
Complementary and Alternative
Treatments for Problem Behaviors
in Angelman Syndrome | Vanderbilt
University/Baylor | \$40,269.00 | | 2009 | Benjamin | Philpot | Novel therapeutics for Angelman syndrome by manipulating Ube3a expression | University of North
Carolina, Chapel Hill | \$199,972.00 | | 2010 | Althea | Robinson | Association of Sleep and
Behavior in Children with
Angelman Syndrome (RDCRN) | Vanderbilt University -
RDCRN | \$25,000.00 | | 2011 | Arthur | Beaudet | The role of antisense RNA
Ube3a-ATS in Ube3a imprinting
and Angelman syndrome | Baylor College of
Medicine | \$100,000.00 | | Grant Year | First | Last | Title | Institute | Amount Funded | |------------|----------|-----------|--|---|---------------| | 2011 | Julie | Davidson | Rett Syndrome Disorders and
Angelman Syndrome as genetic
models for autism spectrum
disorders (RDCRN) | Vanderbilt University -
RDCRN | \$25,000.00 | | 2011 | Scott | Dindot | Examining rescue of neurological deficits in Angelman syndrome mice by expression of the E6-AP isoforms | Texas A&M University | \$84,011.00 | | 2011 | Ype | Elgersma | An inducible mouse model for
Angelman Syndrome: follow up | Erasmus University
Medical Center | \$92,144.00 | | 2011 | Michael | Greenberg | Validation of Arc and Ephexin5 as
Novel Therapeutic Targets for the
Treatment of Angelman
Syndrome | Harvard Medical
School | \$200,000.00 | | 2011 | lan | King | Epigenetic regulation of <i>Ube3a</i>
by a candidate Angelman
syndrome drug (UNCilencer1) -
Wagstaff Fellowship | University of North
Carolina, Chapel Hill | \$110,000.00 | | 2011 | Eric | Levine | Pathophysiology in a human stem cell model of Angelman syndrome | University of
Connecticut Health
Center | \$120,000.00 | | 2011 | Benjamin | Philpot | Preclinical testing of a candidate
Angelman syndrome therapeutic | University of North
Carolina, Chapel Hill | \$200,000.00 | | 2011 | Mark | Zylka | Molecular mechanisms and
biomarkers of a candidate
Angelman syndrome therapeutic | University of North
Carolina, Chapel Hill | \$200,000.00 | | 2012 | Dan | Glaze | Sleep study (RDCRN) | Baylor College of
Medicine - RDCRN | \$17,000.00 | | 2013 | Arthur | Beaudet | Ube3a-ATS targeted antisense oligonucleotides as therapies for Angelman syndrome | Baylor College of
Medicine | \$200,000.00 | | 2013 | Ype | Elgersma | Defining Treatment Parameters for Angelman Syndrome | Erasmus Medical
Center | \$200,000.00 | | 2013 | Craig | Erickson | Preclinical Validation of
Behavioral, Molecular, and
Electrophysiological Effects of
Acamprosate in A Mouse Model
of Angelman Syndrome | Cincinnati Children's
Hospital Medical
Center | \$81,631.00 | | 2013 | John | Lisman | Identification and manipulation of
the phosphatases that produce
aberrant phosphorylation of
CaMKII in AS | Brandeis University | \$200,000.00 | | 2013 | Angela | Mabb | Epigenetic Regulation of Ube3a
by Topoisomerases - Wagstaff
Fellowship | University of North
Carolina, Chapel Hill | \$110,000.00 | | 2013 | Benjamin | Philpot | Defining Treatment Parameters for Angelman Syndrome | University of North
Carolina, Chapel Hill | \$200,000.00 | | 2013 | Jason | Shepherd | Investigating the causal role of
Arc in Angelman Syndrome
pathogenesis | University of Utah | \$170,202.00 | | 2013 | Mark | Zylka | Studies to determine how
Angelman syndrome-associated
missense mutations disrupt
UBE3A function | University of North
Carolina, Chapel Hill | \$200,000.00 | | Grant Year | First | Last | Title | Institute | Amount Funded | |------------|-------------|-------------|--|--|---------------| | 2015 | Stormy | Chamberlain | Testing the efficacy of antisense
oligonucleotides against
UBE3A-ATS in human neurons | University of
Connecticut Health
Center | \$200,000.00 | | 2015 | Ben | Distel | Identification and characterization of novel targets and activators of E6AP | Academic Medical
Center | \$197,685.00 | | 2015 | Heather | Hazlett | Validation of Biomarkers for
Angelman Syndrome Clinical
Trials | University of North
Carolina Carolina
Institute for
Developmental
Disabilities | \$89,980.00 | | 2015 | Hanoch | Kaphzan | Validation of Alpha1-NaKA
Inhibition as a Novel Therapeutic
Strategy for the Mouse Model of
Angelman Syndrome | University of Haifa | \$200,000.00 | | 2015 | Shalaka | Mulherkar | Targeting Rho GTPase Signaling in Angelman Syndrome - Wagstaff Fellowship | Baylor College of
Medicine | \$110,000.00 | | 2015 | Ben | Philpot | Validation of Biomarkers for
Angelman Syndrome Clinical
Trials | University of North
Carolina, Chapel Hill | \$168,700.00 | | 2015 | Anjali | Sadhwani | Speech generating devices in children with Angelman syndrome: An effectiveness trial | Boston Children's
Hospital | \$198,948.00 | | 2015 | Ronald | Thibert | Validation of Biomarkers for
Angelman Syndrome Clinical
Trials | Massachusetts General
Hospital | \$37,380.00 | | 2016 | Ype | Elgersma | Deciphering the role of UBE3A
isoforms, by using
isoform-specific mouse models
for Angelman Syndrome | Erasmus Medical
Centre | \$199,650.00 | | 2016 | Christopher | Keary | Anxiety in Angelman Syndrome | Massachusetts General
Hospital | \$181,800.00 | | 2016 | Eric | Levine | Synaptic plasticity deficits in
Angelman syndrome
patient-derived neurons | University of
Connecticut Health
Center | \$200,000.00 | | 2016 | Sam | Sennott | Augmentative and Alternative
Communication (AAC) Immersion
Project for Individuals with
Angelman Syndrome | Portland State
University | \$79,755.00 | | 2016 | Geeske | van Woerden | Identifying
hippocampus-dependent learning
tests for drug testing in AS mice | Erasmus MC | \$122,650.00 | | 2016 | Mark | Zylka | Genome-scale CRISPR/CAS9
screen to identify new therapeutic
targets for Angelman syndrome | University of North
Carolina at Chapel Hill | \$200,000.00 | | 2017 | Terry Jo | Bichell | ABOM salary | N/A | \$27,600.00 | | 2017 | Paul | Carney | Preclinical assessment of cannabidiol as a treatment for Angelman syndrome | University of North
Carolina at Chapel Hill | \$200,000.00 | | 2017 | Kiyoshi | Egawa | Pathophysiological impact of diverse deregulation of tonic inhibition in Angelman syndrome | Hokkaido University
Graduate School of
Medicine | \$149,990.00 | | Grant Year | First | Last | Title | Institute | Amount Funded | |------------|-----------|-----------|--|--|---------------| | 2017 | Noelle | Germain | Investigating the efficacy of novel therapeutic approaches for restoring UBE3A expression in human Angelman syndrome neurons | UConn Health | \$100,000.00 | | 2017 | Steven | Gray | Angelman Syndrome Gene
Therapy | University of Texas
Southwestern | \$200,000.00 | | 2017 | Sasha | Key | ABOM research | Vanderbilt | \$7,455.00 | | 2017 | Н. А. | Moll | CompAS | Erasmus MC Sophia
Children's Hospital | \$131,618.00 | | 2017 | Eric | Morrow | Shared cellular mechanisms in
Angelman syndrome and
Christianson syndrome | Brown University | \$200,000.00 | | 2017 | Ben | Philpot | Pilot study to validate three novel classes of small moelcules to unsilence the paternal UBE3A allele. | University of North
Carolina at Chapel Hill | \$200,000.00 | | 2017 | Anjali | Sadhwani | ABOM research | Boston Children's
Hospital | \$13,434.00 | | 2018 | David | Godler | Newborn screening for Prader
Willi and Angelman Syndromes: A
feasibility study on 50,000
newborns | Murdoch Children's
Research Institute | \$80,000.00 | | 2018 | Mark | Zylka | Validation of therapeutic guide
RNAs targeting the UBE3A
antisense transcript | UNC Chapel Hill | \$200,000.00 | | 2019 | Ype | Elgersma | To what extent are striatal deficits underlying clinical features of Angelman Syndrome? | Erasmus Medical
Centre | \$199,650.00 | | 2019 | Karen | Erickson | The Prevalence and Form of CVI in Angelman Syndrome | UNC Chapel Hill | \$93,648.00 | | 2019 | Gilles | Trave | Role of UBE3A-HERC2 complex in
Angelman Syndrome: 3D
structure and quantitative
interactomics | CERBM | \$100,000.00 | | 2019 | Jason | Yi | Structure-function studies to characterize UBE3A missense variants | Washington University
in St. Louis | \$200,000.00 | | 2020 | Charlott | DiStefano | EEG Biomarkers of Language in
Angelman Syndrome | The Regents of UCLA | \$199,928.00 | | 2020 | Holly | Fitch | Developmental UBE3A effects on language-related assessments in a mouse AS model | University of
Connecticut Health
Center | \$197,000.00 | | 2020 | Bridgette | Kelleher | Piloting a Cusomized
Telehealth-Based Caregiver
Support Intervention in Angelman
Syndrome | Purdue University | \$50,000.00 | | 2020 | Ben | Philpot | Mapping UBE3A in Non-Human
Primates to Inform UBE3A Gene
Therapy and reinstatement
Strategies to Treat Angelman
Syndrome | UNC Chapel Hill | \$95,102.00 | | Grant Year | First | Last | Title | Institute | Amount Funded | |------------|-----------------|-------------------------|--|--|---------------| | 2021 | Robert | Carson | Characterization of Nonepileptic
Myoclonus in Angelman
Syndrome | Vanderbilt University
Medical Center | \$103,342.00 | | 2021 | Martin | Doughty | Identifying UBE3A substrates
targeted for proteasome
degradation in human cortical
neurons and their pathological
importance in Angelman
Syndrome | The Uniformed
Services University of
the Health Sciences | \$150,000.00 | | 2021 | Ype | Elgersma | Better mice for better insights and
treatments: an AS '15q11-13
deletion' mouse model | Erasmus Medical
Centre | \$198,000.00 | | 2021 | Brigid
Anita | Kelleher
Panjwani | Ingestive behaviors and gut
microbiota in children with
Angelman syndrome | Purdue University | \$100,000.00 | | 2021 | Michael | Sidorov | Phenotyping mouse models of
Angelman syndrome using
multidimensional behavioral
clustering | Children's National
Hospital | \$138,268.00 | | 2022 | Jamie
Mark | Capal
Shen | Recruitment and Deep
Phenotyping of Infants with AS to
Enable Early Treatment | UNC Chapel Hill | \$199,000.00 | | 2022 | Ype | Elgersma | ASO Treatmet for a Better
Understanding of AS
Pathophysiology and Optimizing
Therampeutic Efficacy | Erasmus Medical
Centre | \$199,100.00 | | 2022 | Joint w/FAST | | Newborn screening for Prader
Willi and Angelman Syndromes | | \$154,000.00 | | 2022 | Adam | Hantman | Pilot Study to Understand Skilled
Motor Impairments in Angelman
Syndrome | UNC Chapel Hill | \$200,000.00 | | 2022 | Kara | Margolis | Angelman and the Gut | NYU | \$250,000.00 | | 2022 | Ben/Mark | Philpot/Zylka
Amaral | Pilot to assess feasibility of
targeting maternal UBe3a
allele-specifically in rhesus
macaque blastocyts | UNC Chapel Hill,
UC Davis | \$95,201.62 | | 2022 | Anne | Wheeler | Development of the Angelman
Syndrome Specific
Neurodevelopment Training
Manual" (PIXI) | RTI | \$195,436.00 | | 2023 | Ryan | Butler | Support of the shRNA/AAV9
approach to treat AS | UTSW | \$200,000.00 | | 2023 | Ype | Elgersma | Can individuals with ICD/UPD
mutations participate in ASO
trials: The effect of 2-fold UBE3A
overexpression in an ICD/UPD
mouse model | Erasmus | \$99,000.00 | | 2023 | Eric | Levine | Contribution of hemizygous
HERC2 deletion to Angelman
syndrome pathophysiology | University of
Connecticut Health
Center | \$200,000.00 | | 2023 | Wen-Han | Tan/FAST | Natural History Study | w/FAST | \$235,572.16 | | 2023 | Anne | Wheeler | Development and Validation of an
Angelman Specific Behavior
Measure | RTI International | \$290,362.00 | | Grant Year | First | Last | Title | Institute | Amount Funded | |------------|--|--|---|--|---------------| | 2023 | Emily | Farrow | Development and Implementation
of a Novel Comprehensive Panel
for the Early Detection of
Angelman Syndrome | The Children's Mercy
Hospital | \$199,362.00 | | 2024 | Mark | Zylka | Develop biosensor to quantify
endogenous UBE3A activity in
cells and predict variant
pathogenicity | University of North
Carolina at Chapel Hill | \$200,000.00 | | 2025 | Elizabeth
Wen-Hann
Robert
Jean-Baptiste | Berry-Kravis
Tan
Carson
Le Pichon | Movement Disorder Analysis in
Angelman Syndrome | Rush University MC
Boston's Children's
Hospital
Vanderbilt University
MC
Children's Mercy
Hospital | | | 2025 | Ype | Elgersma | Establishing Phenotypic readouts
in a novel mouse model of AS
Type 1 deletion | Erasmus Medical
Centre | \$148,500.00 |